In the News
Protecting the Phillips Collection – Summer/Fall 2018
Carmine, Davenport Named Stockholders at Mueller Associates – March 7, 2018
A New Home for the Nabb Research Center – Winter 2017/2018
Former Corcoran Gallery of Art Modernization Featured in ENR – June 13, 2017
Mueller Takes the Plunge for the Special Olympics – January 30, 2017
Mueller Associates Projects Win Multiple Awards – December 19, 2016
“Preserving the Pratt” – Spring 2016
Mueller Associates Promotes Davenport to Project Manager – January 25, 2016
Mueller Associates Celebrates 50th Anniversary – January 20, 2016
Mueller Associates Relocates to Airport Square in Linthicum – September 21, 2015
Chesapeake Shakespeare Company Opens in Historic Building – September 13, 2014
New UMBC Arts Center Featured in The Baltimore Sun – August 30, 2014
Maryland State House Restoration Wins Award – January 2014
Gene Nerf, PE, Engineer for 50 Years, to Retire – September 2013
National Academy of Sciences Wins Awards – March 2013
Folger Shakespeare Library Featured in Papyrus Magazine – Spring 2013
Sant Ocean Hall Featured in Architect Magazine – February 6, 2013
Syvertsen Named Stockholder and Associate at Mueller Associates – February 2013
Baltimore Museum of Art Featured in Papyrus Magazine – Spring 2012
Mueller Releases Campus Tour Highlights – July 2011
Momentum
On Point
Sustainable Design: Smart Strategies at Work
On Point with Todd Garing, PE, LEED AP
Todd Garing, PE, LEED AP, a vice president with Mueller Associates, has helped engineer several of the firm’s high-profile sustainable projects, including the new Monticello Visitor Center. On-Point explores Mueller’s “green culture” with Todd, as well as the latest on the firm’s LEED® projects.
Q: Mueller has a diverse portfolio in sustainable design. What projects have been unique?
A: It’s interesting—one of our earliest projects that focused on conserving energy was for the White House in the 1970s. We designed a solar energy system there. That was before my time, but this past year, we had the opportunity to work on another historic property, at Thomas Jefferson’s Monticello. The new visitor center there is a LEED-Gold project, and it incorporates an innovative geothermal chiller/heater system. We like to think that Jefferson would have approved—it was cutting-edge but organic in that it made good use of the land.
Q: What are your most recently completed LEED projects?
A: The new Teacher Education and Technology Center recently opened at Salisbury University in Maryland. It’s a prominent “gateway” building for the campus, and it has a LEED-Silver certification pending. We did extensive energy modeling for the facility. The Duke University School of Nursing is LEED-Silver certified. Many of our higher education and cultural projects reflect sustainable measures. Currently, our projects include the renovation of the historic National Academy of Sciences building in Washington, D.C., the University of Maryland Baltimore County Performing Arts and Humanities facility, where we are pursuing LEED-Silver certification; and the Salisbury University Perdue School of Business, where we are aiming for a LEED-Gold certification.
Q: How has the firm approached the challenges of incorporating sustainable design measures?
A: We’ve been working with institutional spaces for many years, so we’ve always had a focus on energy conservation—incorporating control strategies and more efficient equipment, or laying out the pipe and ductwork in a more effective configuration. The LEED process has essentially validated much of what we have been doing over the years. The focus has evolved so that it is not just an energy and cost-saving focus, but we are thinking more broadly in terms of environmental awareness. It challenges us to think in terms of each and every detail and what can be done more effectively to conserve resources.
For example, many people don’t realize how much water is produced through A/C condensate. For the University of Maryland Baltimore County Performing Arts and Humanities facility, we were able to predict that as much as 40,000 gallons of water from condensate could be collected a month during the summer. That’s a lot of water—it could be used for toilets, irrigation, or cooling tower make-up. For that project we utilized the A/C condensate as well as the rainwater collected from the roof to serve the irrigation system.
Q: How integral are sustainable strategies to the firm’s work? How much of Mueller’s staff focuses on this aspect?
A: The sustainability framework guides all of our projects—it’s inherent in our approach and our process. What is exciting to us is that the LEED process really taps into the “brain power” of the firm. We have a lot of smart people here—people who are good at coming up with ideas and new strategies. A large percentage of our professional staff is LEED accredited, so it has become integral to our practice and the way we approach our work.
Mueller: A BGE Service Provider
On Point with John Morris, PE and Ken Rock, PE
John Morris, PE, and Ken Rock, PE, have provided leadership for the past year in the firm’s role as a BGE Service Provider. On Point reviews the highlights of the program with the two Mueller vice presidents.
Q: What is a BGE Service Provider? What does this mean for Mueller clients?
A: Ken Rock: BGE encourages architects, engineers, and contractors to become participating Service Providers through the company’s Smart Energy Savers Program®. The program focuses on energy efficiency through products and services, and helping clients realize lower operating costs.
The rebate program addresses energy-saving measures that exceed the minimum energy code requirements. These range from straightforward upgrades, such as the use of occupancy sensors for lighting controls, to complex, prescriptive programs for custom systems. These require upfront capital costs, and BGE helps model the energy and cost savings so clients can forecast the long-term value.
Q: What’s involved with becoming a Service Provider?
A: John Morris: Training is important. BGE, with the support of ICF International, offers a robust program of training and seminars. It begins with an introductory half-day of training, and continues with occasional seminars that help keep providers up to speed on energy-saving tools and strategies.
Q: What’s covered in the training and ongoing seminars?
A: John: Some of the topics are procedural, and relate to the application process for rebates. For example, a recent seminar covered the specifics of the rebate program, and the BGE calculation tools available to quantify energy savings. BGE prefers that applicants go through the training in order to understand the paperwork—how to complete the forms and required calculations. Other topics focus on energy-saving equipment and strategies, such as the benefits of different types of lighting fixtures and controls.
Q: What types of clients benefit from Mueller’s role as a Service Provider?
A: Ken: All types of clients in Maryland can benefit. The Smart Energy Savers Program is driven by the Empower Maryland legislation, which requires that the utilities show energy savings. BGE offers a number of incentives to building owners. Several of our state clients in particular, such as universities, are interested in this opportunity.
A: John: Several of our current projects involve rebate applications. The new Law School at the University of Baltimore, for example, has several custom energy-saving features that will qualify. We have submitted an application for that project as well as the Johns Hopkins University Lacrosse facility. The University of Maryland at Baltimore Pharmacy School has been awarded a rebate, and we will also be submitting an application for the Morgan State University Business School. There are a lot of opportunities for rebates for existing facilities as well, such as lighting retrofits, putting variable speed drivers on motors, and HVAC equipment replacements. These all qualify for rebates.
Revit®: The Standard for MEP System Design
On Point with Rebecca Fischer, PE, LEED AP BD + C
A mechanical project engineer, Rebecca Fischer is a graduate of Penn State and has worked with Mueller Associates for nearly nine years. She has been using Autodesk’s Revit® and Navisworks® software for building information modeling (BIM) since 2006.
Q: What was your introduction to Revit? What were your early impressions of the modeling software?
A: I’ve been using Revit MEP here at Mueller since 2006. I graduated with my engineering degree in 2003, and the program didn’t exist when I was in school. Our management at Mueller recognized early on that we needed to embrace this technology, and provided us with comprehensive training. We saw where the industry was going.
Our first project using BIM was the new Visitor & Admissions Building at the University of Delaware. At first, the software was not as well suited for mechanical/electrical engineering, but it has improved by leaps and bounds.
Q: What has improved since your earliest use of the software?
A: At the beginning, we were only able to model ductwork and electrical systems. Now, we have the ability to model just about every mechanical, electrical, plumbing, and fire protection system. We can do the electrical panel schedules, which we couldn’t do before. The software has advanced tremendously, and our own training and proficiency has improved. Our entire professional and production team is trained in Revit. It makes it a lot easier when we’re using the technology across the board, rather than having just a few Revit “specialists.”
Q: How many of Mueller’s current projects are using BIM technology?
A: Nearly all of them. It’s one of the biggest differences from three or four years ago. Nearly every project, including our university and museum work, is done in Revit today. It’s become the standard, especially for large projects.
Q: What advantages do you see as you work with BIM?
A: The software really lends itself to a much more integrated approach to design. We can see the other disciplines’ design intents in a 3-D environment, with real-time updates. We export the models to Navisworks so that we can do our own clash detection. Mueller also has a comprehensive Revit-based library with details on equipment and fixtures. It streamlines our design time and effort and can be used to support life cycle and maintenance programs.
Q: How do you keep current with updated programs?
A: We participate in the Autodesk user groups and Autodesk University. I’ve also had the opportunity to visit the Autodesk offices in New Hampshire and test their last two Revit MEP products prior to release and provide feedback. We have a lot of knowledge about BIM in this office and that’s based in part on our experience but it’s also a result of our commitment to continue to learn and take advantage of the latest resources.
An Intricate Puzzle: The University of Baltimore Law School
On Point with John Morris, PE
In 2008, Mueller Associates was selected as part of the Behnisch Architekten/Ayers Saint Gross team to design the mechanical systems for the new University of Baltimore Law School. Mueller Vice President John Morris, PE, led the engineering effort for this innovative, award-winning project, which opened in 2013.
Q: You’ve been a mechanical engineer for more than 25 years. How does this project rank in terms of complexity?
A: It’s certainly [one of] the most complex projects I’ve ever worked on. The design was very ambitious in terms of the sustainable strategies and Behnisch’s objective of keeping the spaces very clean and streamlined. The basic design of the building, with its interlocking forms, has been described as a puzzle, and for us, integrating the mechanical systems into the spaces was like an intricate puzzle as well. At 12 stories and 192,000 square feet, it was also a very large project to manage.
Q: What sets this building apart from other large projects you’ve worked on?
A: There are several features that made this project both interesting and challenging. One is the thermally active (radiant) slab flooring, which is used for both heating and cooling. This is a little more common in Europe but hasn’t been implemented on many U.S. projects. The slabs were 11 inches thick and there was a lot of infrastructure to accommodate there—electrical conduit, PEX tubing, security conduit, and so forth. The automated natural ventilation system is another key feature. There was a lot of testing to be sure that everything worked properly in terms of humidity control. The windows in the curtainwall system open and close automatically depending on outdoor ambient temperature and relative humidity.
Q: Are there other building innovations that you were working with?
A: Yes. The automated shade control system is an important feature of the building from a climate control perspective. There are operable shades along the façade between the curtainwall and the rainscreen system. Solar sensors on the roof track the sun’s radiation and trigger the automatic opening closing of the shades to control solar heat gain. Also, if the wind speed becomes too high, the shades automatically retract to prevent damage.
Q: Much of what you describe is automated—can people jump in and control the settings as well?
A: Yes, the building is designed to be “smart,” but there is a lot of flexibility. The audio-visual system is tied into the shade control system, for example, allowing for manual adjustments in the amount of natural light. In private offices, occupants get a signal—a green light when ambient environmental conditions are favorable—that lets them know that they can initiate natural ventilation themselves by opening and closing windows.
Q: Are there other sustainable aspects related to the mechanical engineering?
A: There is a dedicated outdoor air system with a heat recovery wheel and a passive desiccant wheel that helps drive down the humidity level. The energy recovery wheel utilizes exhaust air to preheat or pre-cool the outdoor air as necessary. Other sustainable features include high-efficiency chillers and boilers, water-conserving fixtures, and a rainwater harvesting system.
Q: How important was BIM to the design of this building?
A: BIM really helped to facilitate the design. Whiting-Turner, the construction manager, created BIM models of the slabs, which was important. All of the modeling helped with the intricate integration of the systems with the structure. There are a lot of exposed concrete finishes in this building and BIM helped us create a clean look.
The Right Fit: Chilled Beam Technology
On Point with Darren Anderson
Chilled beam technology is seeing increased use in the U.S. as an energy-efficient option that can lower long-term operating costs in buildings. Darren Anderson, PE, CPD, LEED AP BD+C, an associate with Mueller Associates, discusses the advantage of using chilled beams and how the technology can impact the overall design of a building.
Q: What are the basics on chilled beam technology? How does it work?
A: Active chilled beam systems use conditioned air supplemented by ceiling-mounted chilled water heat exchangers. The beams receive air ducted from a central air handling unit and water piped from a central chilled water system. The amount of water varies in order to maintain a comfortable temperature in the space. The ducted air passing through each beam induces room air to flow through its heat exchanger, cooling the room as it circulates. The amount of air delivered to each space is minimal—often only the amount required for ventilation.
Q: What are the benefits?
A: Using water in a chilled beam heat exchanger to remove heat, rather than using conditioned air, is more efficient. Water can carry more energy than air, and this leads to lower operating costs. First costs to use chilled beam systems for an entire building are similar to costs for variable air volume systems when you factor in other design considerations. Chilled beam systems are more expensive than air-only systems with traditional air diffusers, but the ductwork and air handler capacity needs are reduced. There may also be less space required for the mechanical room and ceiling area.
For tenants or building users, the technology can offer increased comfort, with more temperature control zones and better indoor air quality.
Q: What types of spaces are appropriate for chilled beam technology?
A: We are seeing an increased interest in chilled beam systems for laboratories in particular. Labs often house a lot of heat-generating equipment. The air cannot be recirculated, which can lead to high energy costs. The use of chilled beams assists in reducing the required airflow because the amount of air is driven by ventilation and not by the need to remove heat from the equipment. This lowers the overall amount of energy used.
Q: Does Mueller have any current projects that incorporate this approach?
A: We are currently assisting Perkins+Will in the design of the new Natural Sciences, Mathematics, and Nursing Center at Bowie State University in Maryland. Perkins+Will has had success with the chilled beam approach and has been a proponent from the start of this project. The building has a number of laboratories and was a good candidate for using a chilled beam system.
Q: How has chilled beam technology made a difference on the Bowie State University project?
A: Incorporating chilled beams in the Natural Sciences, Mathematics, and Nursing Center has had a dramatic impact on the overall design. It has been very interesting to see how this technology can alter a design and have a positive impact on the overall cost.
Because the ducts required for the chilled beam system are smaller, the design team was able to reduce the building height by one foot on both the second and third floors. The two-foot reduction overall will save the university more than $300,000, which offsets the cost of the chilled beam system and lowers the life cycle cost of the building as well. Part of the cost-savings is a result of the smaller amount of dynamic glazing needed for the exterior windows, because of the reduced height.
Chilled beam technology is a strong option for new buildings, with a number of clear benefits. In our experience, the best results—and potential cost-savings—occur when the architectural and engineering team works creatively and in close collaboration, to be certain those benefits are realized.